大家好!本文和大家分享一道2015年上海高考数学真题。这道题满分16分,是一道非常不错的数列题,如果想考上好的大学,高中生必须要牢固掌握这类题型。整体来说,这道题的难度不算太大,但第三小问还是让不少学生丢了分。
先看第一小问:求数列{an}的通项公式。
高中阶段,求数列的通项公式通常有三类题型。一是给一组数据,通过找规律得到通项公式;二是等差、等比数列通项公式;三是递推法求数列通项公式。本题考查的就是递推法求数列通项公式。
将bn的通项公式代入题干中的递推关系,从而可以得到a(n+1)-an=6,即数列{an}的后一项与前一项之差为定值6,即数列{an}是以6为公差、以a1=1为首项的等差数列。知道了等差数列的首项a1和公差d,直接代入等差数列通项公式an=a1+(n-1)d即可求出所需的通项公式。
再看第二小问:证明数列{bn}的最大项。
要通过an的最大项找到bn的最大项,那么就要充分利用an与bn的关系。我们先将题干中的递推关系进行移项处理,将第n+1项移到一边,第n项移到另一边,这样就可以发现新数列{an-2bn}实际上是一个常数列,所以an-2bn=a1-2b1,即an=2bn+a1-2b1。这样再将第n0项代入就可以证明出结论了。
最后看第三小问:求参数λ的取值范围。
前面第一、二小问都比较简单,但是第三小问却难住了不少同学。
题目中有一个很重要的信息,就是数列{an}有最大项和最小值,这就提示我们需要先求出数列{an}的通项公式,然后再判断其何时取得最值。
将bn=λ^n代入递推关系,可以得到a(n+1)-an=2[λ^(n+1)-λ^n]。看到这儿,很明显可以用累加法求数列{an}的通项公式an=2λ^n-λ。
求出an的通项公式后,再来找其取最值的条件。由于an的通项公式出现了指数形式而且底数λ<0,所以最大值只可能出现在偶数项,最小值只可能出现在奇数项,因此我们可以分奇偶项来讨论。
对于偶数项即第2n项时,变换后的通项公式就变成了2[(λ^2)]^n-λ,而λ^2为正数,所以就可以利用指数函数的单调性求出最值。而指数函数单调性与底数有关,所以还需要继续将λ分为(-1,0)和(-∞,-1)来讨论。
对于奇数项即第2n-1项时,通项公式中的指数部分肯定是负数,然后再分为(-1,0)和(-∞,-1)来讨论。当λ在(-1,0)时,指数部分是增函数,此时有最小值,而当λ在(-∞,-1)上时,指数部分是减函数,没有最小值。
当然,不要忘了还有λ=-1的情况。
这道题就和大家分享到这里,你学会了吗?
声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:ck9999920@gmail.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。
今日推荐
山东东营烈士韩岗妹妹韩林阳参军14年前牺牲被追授为烈士
我想跟随哥哥的脚步进入军营“烈士韩岗”妹妹韩林阳。把才华献给祖国“19岁的哥哥不幸牺牲了”抱着对部队生活的憧憬想继承哥哥遗志的妹妹韩林阳立志参军打败了立志参军变强的韩家父母抚养女儿用妹妹韩林阳的记忆韩岗生前和家人合影为什么哥哥从军立志抛弃自己救人,韩林阳心中逐渐有了继承哥哥遗志的答案,年迈的父母是否支持自己入伍?韩林阳向父母透露了自己的内心痕迹…